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A numerical procedure is described for the orthogonalization of a discrete non-orthogonal 
coordinate system in two dimensions. One set of the non-orthogonal coordinate lines is 
preserved by the orthogonalization procedure; the other set is shifted, by interpolation, to form 
the new orthogonal system. The procedure is based upon an initial-value formulation with the 
non-orthogonal coordinates as the independent variables. A first order linear partial 
differential equation is derived which describes the orthogonal trajectories. A discrete 
representation of the equation is suggested and an interpolation procedure is described. 
Examples of non-orthogonal with orthogonalized meshes are given including closed and open 
coordinate lines. The method may be used to generate boundary fitted coordinates for 
boundary value problems or Eulerian time dependent codes. It may also be used at each 
timestep in a waterbag or semi-Lagrangian code. 

1, INTRODUCTION 

Owing to the high speed of present-day computers, the running of a quite 
sophisticated two-dimensional finite difference program often uses only a small 
portion of the computer time available to the user. It is no longer necessary to write a 
program which will solve the immediate problem in the shortest possible computer 
time. On the contrary, considering the long times taken to develop and debug such 
programs, it is well worth ensuring that they have the widest possible applicability, 
even at the expense of a longer running time. We may practice this principle by 
writing two-dimensional Eulerian codes which can be used in any boundary-fitted 
orthogonal coordinate system. This is achieved by expressing the vector differential 
operators (div, grad, curl, etc.) in their general orthogonal coordinate forms (see, for 
example, Morse and Feshbach [ 1 I). The particular coordinate system to be used must 
be supplied in the form of two scale factors for each mesh point. Although some 
computer time would be wasted, because of the more complex algorithms, when using 
such a code in Cartesian coordinates (both scale factors being constants) the code 
would simply and accurately deal with complex boundaries. For the new analytic 
coordinate systems the scale factors are defined by known functions; in the more 
general case a computational procedure for generating an orthogonal mesh is 
required. 
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Many schemes for producing discrete orthogonal coordinates in two dimensions 
have already been reported [2-81. This paper describes a method which, unlike 
earlier work [2-81, solves a single lirst order partial differential equation numerically. 

The non-orthogonal mesh is described by the Cartesian coordinates x(i, j), y(i, j) 
for each point (i, j). In the continuous limit, corresponding to an infinite number of 
points, x(i, j) and y(i, j) are parametric forms for the lines i(x, y) = constant and 
j(x, y) = constant (i-lines and j-lines for short). In the continuum, the coordinates are 
non-orthogonal if 

Vi . Vj # 0. 

The discrete mesh is non-orthogonal if the difference form for Vi + Vj, calculated to 
the chosen accuracy, differs from zero by more than this accuracy. 

The orthogonalization is achieved by retaining one set of lines, the j-lines, and 
moving the i-lines so that Vi. V’ is zero within the limits of discreteness. The 
problem is posed as an initial-value problem for the new orthogonal coordinate k 
with initial conditions equivalent to specifying mesh points on one chosen j-line. A 
partial differential equation for k(i, j) is derived and written in difference form with 
the non-orthogonal coordinates (i, j) as the independent variables; the non-orthogonal 
lines must therefore be smoothly represented by the mesh points. 

Because the method preserves the j-lines, and because it is fast, it may be used at 
every time step in a semi-Lagrangian code in which thej-lines, which would usually 
correspond to contours of physical interest, move with the fluid whereas the i-lines 
are defined by the orthogonality condition. This “waterbag” concept is applicable to 
both hyperbolic and elliptic problems and is reviewed in [ 111. 

Two equivalent equations for the orthogonal trajectories are derived in Section 2. 
One equation is more suitable than the other and Sections 3 and 4 describe the 
differencing and interpolation required to produce the orthogonal coordinates. 
Section 5 summarises the orthogonalization procedure. Examples of open and closed 
line coordinate systems are given in Section 6. 

2. FORMULATION 

A two-dimensional non-orthogonal coordinate system has two pairs of directions 
(Fig. 1). One pair, the covariant base vectors, describes the directions along the i-lines 
(&/~?j) (r(i, j) is the position vector) and along the j-lines ar/ai. On the other hand, 
the contravariant base-vectors Vi and V’ are perpendicular to the i-lines andj-lines. 
These directions are not independent but are related by the metric tensor which may 
itself be written in terms of either the covariant or contravariant base vectors. When 
writing equations involving the base vectors we may use the metric tensor to convert 
exclusively to either contravariant or covariant base vectors. Since x(i, j), v(i, j) and 



166 CHARLES W. DAVIES 

J-1 

FIG. 1. A portion of the non-orthogonal (i, j) coordinate system showing the directions of the two 
types of base vectors. 

not i(x, y), j(x, y) are known-in the sense that a table of values for x and y against i 
and j exists-the covariant base vectors are naturally calculated: 

a ax . ay 1 
~=~x+~Y’ 

(1) 
a ax - ay . 
,=7x+zy, 
aJ aJ 

where f and 9 are unit vectors along the x and y axes. 
The covariant metric tensor is normally expressed in terms of the covariant base 

vectors: 

The equations for the contravariant base vectors in terms of the covariant base 
vectors are 

9 (2) 

where g is the determinant of the metric tensor. 
We require equations which describe a new set of lines which are perpendicular to 

the j-lines. This new set may either be represented by a tangent vector field dr(i, j) or 
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by a function k(i, j) which is constant along a new line. There are four equations for 
lines perpendicular to the j-lines (Fig. 2): 

d+O, (3) 

dr A Vj = 0, (4) 

Vk - Vj = 0, 

Vk f&O. 

Substituting for dr and Vk using 

and eliminating Vi and Vj using Eqs. (2); Eqs. (3) and (4) lead to 

$ =f(i, j), 

while Eqs. (5) and (6) lead to 

where 

ak *. . ak 
-g + f 09 1) ai = 0, 

ai aj 
fW)= ~ 2 , 

( 1 z 

(7) 

(8) 

FIG. 2. A portion of the orthogonal (k, j) coordinate system illustrating equations (3~(6). 
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which by Eqs. (1) is 

Since di and dj describe dt, the tangent to the orthogonal lines, Eq. (7) gives the 
rate of change of i with respect to j along an orthogonal trajectory. 

Equation (8) is almost the simplest non-trivial first order partial differential 
equation. Being first order, it is hyperbolic and has one set of real characteristic 
directions or characteristics (see for example Chester [9]). With equations of this 
type an equivalent system of ordinary differential equations, describing the rate of 
change of k, i and j along the characteristics, may be derived. For Eq. (8), this system 
is 

di/dt = f(i, j), 

djld = 1, 

dk/dt = 0, 

where t is a running parameter along the characteristics. These equations are just an 
expanded form of Eq. (7) and we may deduce that the characteristics of Eq. (8) are 
the orthogonal trajectories. 

3. DIFFERENCE FORM OF THE ORTHOGONAL EQUATIONS 

Either of the equivalent forms (Eqs. (7), (8)) which define the coordinate 
orthogonal to j may in principle be used. Since the ordinary differential Eq. (7) gives 
the rate of change of i with j along an orthogonal trajectory, which is unknown a 
priori, a second order scheme may only be used here at the expense of iteration. In 
contrast, however, the partial differential Eq. (8) readily admits the use of a scheme 
of second order accuracy. 

The difference scheme chosen for Eq. (8) is implicit and of second order accuracy 
and is illustrated by Fig. 3. For simplicity i and j are assumed to have unit intervals 
between adjacent points. The scheme is centred about the point (i, j + $); the 
representation is as follows: 

(ak/aj)(i, j + f) = k(i, j + 1) - k(i, j), 

@k/&)(i, j + 4) = S(k(i + 1, j + 1) - k(i - 1, j + 1) 

+ k(i + 1, j) - k(i - 1, j)), 

f = f(i, j + 0 

(10) 

(11) 

(12) 
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J 

FIG. 3. Two j-lines illustrating the finite difference scheme. 

Substituting Eqs. (lo)-(12) into Eq. (8) gives 

-+k(i- l,j+ l)+k(i,j+ l)+$k(i+ l,j+ 1) 

= $ k(i - 1, j) + k(i, j) - f k(i + 1, j), i = 2,3 ,..., Z - 1. (13) 

Equations (13) are an incomplete set of equations for k(i, j + 1 ), i = 1, 2,..., Z, in 
terms of k(i, j), i = 1, 2 ,..., Z, or vice versa. They must be supplemented by two 
equations, one for each end. These two equations depend on the nature of the coor- 
dinate system: there are three cases. 

If the j-lines are closed, then, in principle, there are no ends. In practice we have to 
have ends but, nevertheless, the same difference scheme may be used at each point. 
Although k is a single-valued function of i, it is a many-valued function of position. 
Vk must be single-valued and, for this to be so, the different branches of k must differ 
by an integer times a constant period Ak, where 

Ak=k(Z,j)-k(l,j) 

and the i = 1 line, the i = Z line and the branch cut coincide. Rather than define 
k(Z, j) we may define Ak and use 

k(0, j) = k(Z - 1, j) - Ak 

k(Z, j) = k(1, j) + Ak 
(14) 

to write Eqs. (13) for i = 1, 2 ,..., Z - 1. The matrix of the coefficients of k(i, j + 1) in 
this case is not quite tridiagonal [lo]; it has two extra non-zero elements: in the top 
right-hand corner and in the bottom left-hand corner. Even so, the system may easily 
be solved by Gaussian elimination and back substitution. 

Although the j-lines are not closed, the case of translational symmetry (as in a 
crystal lattice) is entirely analogous and deserves no separate explanation. 
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If the j-lines are open, Eq. (11) may be replaced by one-sided difference equations 
at the ends, for example, 

(ak/~i)(l,j)=k(2,j)-k(l,j), 

@k/Eq(Z, j) = k(Z, j) - k(Z - 1, j). 
(15) 

In this case the system of equations is tridiagonal which is particularly quick and 
easy to solve [lo]. For higher accuracy, but at the expense of a more difficult system 
of equations to solve, a second order, three point scheme may be used. 

In the original non-orthogonal coordinate system, the end i-lines are often already 
orthogonal. In this case Eqs. (13) may be supplemented by 

4L.i + 1) = W,j), 

k(Z, j + 1) = k(Z, j). 
(16) 

The system of equations will then be tridiagonal. 
It seems natural to regard the two additional equations at i = 1 and i = Z (i = Z - 1 

in the periodic case) as boundary conditions. This is proper in the third case 
(Eqs. (16)) which, in general, overspecifies the problem; but in the particular case 
when the i-lines are already orthogonal, the over-specification and Eq. (8) are 
consistent. However, in the other two cases the equations at the ends are not 
boundary conditions-they are difference equations representing Eq. (8). 

4. PRODUCTION OF THE ORTHOGONAL MESH 

Given the values of k on a j-line we are now able to calculate k on an adjacent j- 
line. From the initial conditions of k on a single j-line, we may, therefore, calculate k 
at every point on the mesh. A convenient initial condition is 

k(i, 1) = i, i = 1, 2,..., I; 

k(i, 2) is found by solving the system of Eqs. (13). Then, putting k(i, 2) on the right- 
hand side of Eqs. (13), we may solve for k(i, 3) and so on, until we have k(i, j) for i 
in the range 1 to Z and j in the range 1 to J. Since we have x, y and k at each point 
we may regard x and y as functions of k and j. The Cartesian coordinates on an i-line 
must now be changed such that k is a constant on the new lines: the k-lines. Holding 
j constant, we may find the coordinates x, y at the values k = 1, ,2,..., Z by inter- 
polation. Choosing these values preserves the points on the first j-line (Fig. 4). 

In practice some modifications are required to treat the occurrence of focussing 
and defocussing of lines leading to irregular intervals in k-something highly 
detrimental to accurate interpolation. Rather than calculate k at each point it is 
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--- orthogonal 
traJectory 

FIG. 4. The function k(i, j) with the initial conditions of k equal to i on the first j-line. 

preferable to calculate i* at each point, where i* is the “i” of Eq. (7). Let the initial 
conditions for i* be 

i*(i, 1) = i, i= 1,2 ,..., I. (17) 

The orthogonal trajectory, starting at (i, 1) cuts thejth line with an i-value of i*(i, j) 
(Fig. 5). 

Say that i*(i, j) has been found and that i*(i, j + 1) is required. We find the values 
of k on theph line which are consistent with k being equal to i on the (j + 1)th line. 
That is, writing 

k(i,j+ l)=i, i = 1, 2,..., I. 

We swap the right- and left-hand sides of Eqs. (13) and solve for k(i, j). Having 
found k at the non-orthogonal points on the jth line we then find, by interpolation, 
the values of k at the orthogonal points (where i is equal to i*). The intervals in i are 

--- orthogonal 
trajectory 

FIG. 5. The function i*(& j) with the initial conditions of i* equal to i on the first j-line. 

58l/39/1-12 
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- -- orthogonal 
tL3JKtOry 

FIG. 6. Illustrating how i*(i, j) is obtained from k(i, 2) and i*(i, I). The initial conditions are that 
k(i, 3) is equal to i. 

equal which makes the interpolation simple, quick and accurate. Four point Lagrange 
interpolation was used, for example, if i*(i, j) lies in the range i’ to i’ + 1: 

k(i”, j) = _ P(P - l)(P - 2) 
6 

k(i, _ 1 j) + (P’ - l)(P - 2) k(i’, j) 

_ P(P + l)(P - 2) 
2 

k(i’ + 1:j) + ‘(‘L-‘) k(i’ + 2,j), (18) 

wherep=i*-i’. 
Since k is a constant on orthogonal trajectories and since k is equal to i on the 

(j + 1)th line (Fig. 6): 

i*(i, j + 1) = k(i*(i, j), j) (1% 

Starting from the initial conditions (17) we may use the above to calculate i* at each 
point. i*(i, j) is the ideal information for finding the Cartesian coordinates of the 
orthogonal points; it is the value of i to which the (i, j)th point must be moved. The 
interpolation is identical to that of Eq. (18). 

5. SUMMARY OF THE ORTHOGONALIZATION PROCEDURE 

To clarify and stress the procedure the major steps to be executed are outlined 
below: 

(a) The function f(i, j) (Eq. (9)) is calculated on the non-orthogonal mesh. In 
practice, Eqs. (10) and (11) were used to calculate the derivatives of x and y in 
Eq. (9). 

(b) i* is set to its initial value on the first j-line (Eq. 17). 
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(c) The system of Eqs. (13) is solved backward for k(i, 1) with k(i, 2) equal to 
i. That is, the following system of equations is solved with j equal to 1: 

$k(i- l,j)+k(i,j)-fk(i+ l,j)=f+i. 

(d) i*(i, 2) is found by interpolation of k(i, 1) (Eqs. (18), (19) with j equal to 
1). 

(e) Steps (c) and (d) are repeated for the second and third j-lines; and then the 
third and fourthj-lines; and so on until i* is known at every point. 

(f) The points are moved to their orthogonal positions by practising the inter- 
polation of Eq. (18) on x and y. 

6. EXAMPLES 

To avoid the occurrence of larger area elements than necessary, the initial 
conditions of an even distribution of i-points should be taken on a j-line passing 
through the most divergent region of the i-lines. For closed j-lines, this is achieved by 
starting at the outside j-line and working in. This was applied in Figs. 7 and 8 and 
consequently the outside points of the orthogonal and nonorthogonal meshes 
coincide. 

The procedure cannot cope with an unlimited amount of shear as can the method 
described in [8]. When there is shear the distances between adjacent points on an i- 
line may be large and, even if f(x, y) is smooth, f(i, j) may not be. If the distances 
become unacceptably large morej-lines may be inserted. However Fig. 7 shows that 
the method deals satisfactorily with a high shear; the circles are also shifted. 

The non-orthogonal mesh of Fig. 8 is an example of a method of producing a 
smooth non-orthogonal mesh from the innermost and outermost j-lines. The mesh 
was constructed by joining the points of the innermost and outermost j-lines by 

FIG. 7. Non-concentric and sheared circles. 
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FIG. 8. The non-orthogonal coordinate system was constructed by joining the points on the inner 
and outer ellipses by straight lines. 

straight lines and placing interior points at equal intervals along the straight lines. 
The non-orthogonal meshes of Figs. 9 and 10 were constructed in the same way. This 
is a simple and general method of producing interior j-lines which deform smoothly 
from the outside shape to the inside shape. 

In Figs. 9 and 10 the j-lines are horizontal and the initial conditions were taken on 
the bottom boundary. In these two examples either the periodic treatment (Eqs. (14)) 
or the initial boundary value treatment (Eqs. (16)) could have been used; the former 
was used in Fig. 9 and the latter in Fig. 10. Figure 10 shows enhancement of the 
point density in the central region by a judicious choice of the initial conditions. 

The quality of the orthogonal mesh does depend upon the choice of the non- 
orthogonal mesh. The difference between orthogonal meshes generated from different 
nonorthogonal systems having the same j-lines and boundary points is a measure of 
error in the procedure. Figure 11 makes such a comparison and the error shows as a 
slight thickening of some of the i-lines where the two orthogonalized meshes do not 
quite coincide. Even if we accept that the scheme produces the same mesh from all 
non-orthogonal meshes having the same j-lines and boundary points, different choices 
of j-lines will produce different orthogonal meshes, and some will be better than 

FIG. 9. The j-lines are open and run horizontally. In this example, periodic conditions were applied 
at the ends. 
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FIG. 10. The j-lines are open and run horizontally. In this example, overspecified boundary 
conditions were applied at the ends. 

others. Apart from choosing j-lines which are reasonably spaced and smooth, the 
procedure offers no guidance in choosing j-lines which optimize the orthogonalized 
mesh. Figure 12 demonstrates that the procedure does not rely on the j-lines being 
equally spaced. 

An orthogonalization procedure using Eqs. (15) has not been written and tested. It 
was felt that this case is less useful because the boundary of the mesh is changed by 
the procedure. In practice it has always been possible to construct open j-lines which 
cut the end i-lines at right angles as in Figs. 9 and 10. 

It is very difficult to make quantitative judgement of the orthogonality of the 
orthogonal mesh because the angle of intersection of an i-line and aj-line depends on 
the interpolation used to construct a line from a few points. Clearly, as the point 
density is increased, Eqs. (10) and (11) become better approximations to the 
continuous derivatives, and the resulting mesh is more accurately orthogonal. In the 
examples of Figs. 7-10 the point densities are rather low but the procedure still 
produces meshes which appear tolerably orthogonal. 

One source of difftculty in obtaining a quantitative measure of the error of an 
orthogonalized mesh is the absence of a discrete definition of an accurately 
orthogonal mesh. Following the argument in the introduction one could use the 
deviation of Vi . Vj from zero as a measure of non-orthogonality. However, as 
pointed out at the beginning of Section 2, Vi and Vj are poorly represented when i 
and j are considered to be functions of x and y and Vi . Vj is identically zero when i 
and j are considered to be functions of i and j. This problem may be overcome by 

FIG. 11. A comparison of two different orthogonal systems having the same j-lines and boundary 
points. The different orthogonal systems are superimposed on the right. 
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FIG. 12. Varying j-line spacing. 

calculating the product @/ai) . (&/aj) using Eqs. (1). This measure implicitly 
assumes that the “accurate” discrete mesh is that for which a finite difference approx- 
imation of @/ai) . (&/aj) is smallest. This assumption may be avoided by measuring 
the error in calculating a known invariant. The invariant chosen here is 

e=Vx. Vy, 

where e should accurately be zero on any coordinate system Considering e, x and y 
to be functions of i and j 

4, A = $ $ (vi)’ + $ $ (V)’ 

+ ~av+aY~x 

( 
-- 

ai aJ ai aj 1 
Vi- Vj, 

but if i and j are orthogonal 

e(i, j) = $ $ (Vi)’ t $ $ (Vj)2. 

(20) 

A finite difference approximation for e(i, j) was calculated on each of the 
orthogonalized meshes in Figs. 7-10, based on Eq. (21). In general, the result differs 
from zero for two reasons: error associated with the finite difference approximation in 
(i, j) space and error associated with non-orthogonality. If the mesh is non- 
orthogonal then the absence of the last term in Eq. (20) will cause e to deviate from 
its true value by an amount proportional to Vi . Vj. This deviation should be 
compared with unity-the magnitude of Vx and Vy. In all cases the maximum 
deviation was less than 0.025, with root mean square deviations of between 0.002 
(Fig. 9) and 0.01 (Fig. 8). These figures suggest that non-orthogonality error and 
finite difference error are comparable. 
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The time taken by the procedure depends on whether the periodic treatment or the 
initial boundary value treatment is being applied, the former taking longer. The time 
taken to solve the system of equations (13), unlike more complicated systems, scales 
linearly with the number of equation-r with the number of i-points on each j-line. 
The system of equations (13) must be solved (J - 1) times and since all other 
operations depend on the number of mesh points the time taken by the procedure 
scales linearly with the number of mesh points. The program took between 0.6 and 
0.75 set per 1000 points on a CDC 6500 (about three times slower than a 
CDC 6600). Some improvement on these times may be possible as no attempt has 
been made to optimise the speed of the program. 

7. DISCUSSION 

An orthogonalization procedure which deals with open and closed lines has been 
described. The procedure is an addition to the list [2 - 81 of methods already 
available for the production of boundary fitted orthogonal coordinates, and an alter- 
native to [8] (which also preserves j-lines) for use every time step in a “waterbag” 
code. 

Two advantages of the procedure are its speed and simplicity, (about 100 
FORTRAN statements). The procedure should not be considered an exotic method 
which is only justified in the solution of large problems on large computers. However, 
if more time is available for the production of the mesh, greater accuracy may be 
obtained by using a larger number of points in the orthogonalization than in the 
subsequent numerical solution of the differential equations. 

The essence of the orthogonalization procedure is Eq. (8). The numerical procedure 
described in Sections 3 and 4 is meant as a suggestion; it is unlikely that this 
procedure is the best (in terms of speed and accuracy) in all circumstances. However, 
the numerical procedure does show that it is feasible to employ a finite difference 
representation of Eq. (8) to produce discrete orthogonal coordinate systems. 

General three-dimensional orthogonal coordinate systems are considerably more 
complex than two-dimensional coordinates. Darboux’s theorem [ 121 implies that, 
given one set of coordinate surfaces, then another two sets (required to complete an 
orthogonal triad) may not exist. If an orthogonal system is to be produced from a 
non-orthogonal system then, is general, none of the original coordinates may be 
conserved. Since the procedure described here is dependent on a conserved coor- 
dinate, it seems unlikely that the procedure can be directly applied to the production 
of discrete coordinates in three dimensions. 
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